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INTRODUCTION METHODS 
•  Every hospital produces empirical antibiotic treatment guidelines. These indicate the agent that 

should be given for a specific condition until such time as an organism is isolated from a 
specimen (e.g. urine, blood). Such guidelines are largely didactic documents. 

•  Given the clear association between antibiotic use and the development of resistance within 
populations it is critical that a balance is struck between risking potentially ineffective, or 
unnecessarily broad, empirical treatment. 

•  The modern hospital has access to enormous amounts of information about each patient, 
including previous admissions, microbiology, diagnoses, electronic prescribing data and basic 
demographics.  

•  We hypothesised that this information could be used to generate an individualised antibiotic 
resistance risk assessment for individuals requiring antibiotics. This would direct prescribers to 
narrower spectrum agents for those at low risk of resistance, and restrict the use of broad agents 
to those at proven high risk. 

•  Such a system could be integrated into a hospital EPR system, seamlessly producing specific 
“intelligent” recommendations at the point of prescribing electronically. 

•  As a proof of principle we assessed the accuracy of a machine learning algorithm (MLA)  trained 
in predicting antibiotic resistance in E. coli, K. pneumoniae, and Ps. aeruginosa isolated from 
patients within 48 hours of admission. 

•  We calculated length of stay and mortality for patients treated with effective and ineffective initial 
therapy in an attempt to guide the extent to which the MLA could accept the risk of ineffective 
empirical treatment. 

Figure 3. Medical staff (green) compared to the MLA (blue) at different “bravery thresholds” 

•  We extracted basic demographics, previous admissions dates, and electronic prescribing data for 
all patients from whom E. coli, K. pnemumoniae, or Ps. aeruginosa were isolated over a 7 year 
period. NHS data was anonymised before sharing with academic partners. 

•  This represented 27350 patient admissions and antibiotic initiations with available associated 
resistance testing information. 80% of this data was used to train an XGBoost machine-learning 
algorithm. XGBoost is a popular open-source Machine Learning library that uses ensembles of 
classification decision-trees to generate predictive models (figure 1) and has been utilised by 
multiple winning teams competing in machine learning competitions [1]. 

•  We compared the performance of medical staff and the trained algorithm in appropriate selection 
of co-amoxiclav, piperacillin-tazobactam and carbapenem therapy. This represented 2411 
empirical antibiotic initiations. 

RESULTS 
Who is best at selecting appropriate empirical antibiotic therapy at admission? Medical staff 
or the machine learning algorithm? 
•  For every patient the MLA produces a number between 0 (susceptible) and 1 (resistant). This is 

determined by patient’s risk factors and what the MLA has learnt from the test data regarding 
their influence on resistance. 

•  The “bravery” of the MLA’s choice of antibiotic can be varied by adjusting the threshold at which it  
labels a patient as likely to grow sensitive or resistant organisms.  

•  E.g. if the patient’s value was 0.4 and we set a threshold for predicting they had a resistant 
organism at 0.5, the MLA would consider the patient as likely to have a sensitive organism. 

•  Settling the “bravery threshold” low means it will be likely to “over”-treat people with sensitive 
organisms, setting it high means it is likely to “under”-treat people with resistant organisms. 

•  Optimum reduction in over-prescribing with no significant rise in under-prescribing compared to 
medical staff is achieved with a threshold of around 0.35 (figure 3). 

Does under-prescribing in the first 96 hours matter? 
•  Patients were prescribed a number of different antibiotics empirically at the point of admission. 

These were refined once culture and sensitivity information became available (figure 4). 
•  The level of risk one is willing to accept in this initial decision – whether that be as an individual 

prescriber or in designing a MLA – requires knowledge of the consequences of empirical 
under-prescribing. 

•  Length of stay and mortality rates were calculated for those patients who received effective 
and potentially ineffective initial treatment (figure 5). 

•  Ineffective therapy in the initial period before culture results was associated with an increased 
length of stay and death rate. However, this effect was probably confounded by the increased 
likelihood of older age and frailty in those patients at risk of resistant organisms.  

•  This is evidenced by the similar length of stay and death rates in people treated with 
piperacillin-tazobactam with organisms sensitive to this agent. Further work is needed to 
control for these factors. 

DISCUSSION 
•  Medical staff selection of empirical antibiotics was appropriate 

approximately 50% of occasions. 33% of initiations were 
excessively broad and 17% too narrow. 

•  A machine learning algorithm trained with data representing 2411 
patient antibiotic initiations performed well when tested on the 
whole data set. 

•  A threshold of 0.35 produced no significant increase in under-
prescribing decisions and increased appropriate treatment by 
27%. Use of unnecessarily broad spectrum agents dropped by 
44%. 

•  Outcome data indicated that ineffective initial treatment is 
potentially associated with adverse outcomes. However 
confounding factors which are themselves associated with an 
increased risk of resistant organisms would need to be controlled 
for prior to setting a “bravery level” for a MLA.  

•  There were a number of other limitations to this study. We 
restricted the data to emergency admissions, we were unaware 
of antibiotics that might have been prescribed on paper in A&E 
or by GPs, we restricted MLA training data to initiations with co-
amoxiclav, piperacillin-tazobactam or carbapenems, a number of 
“over-treatment” decisions may have been due to penicillin 
allergy (the Trust’s current default being a carbapenem). 

CONCLUSIONS 
•  Machine learning techniques show considerable promise in the 

area of empirical antibiotic selection. They would allow more 
nuanced antibiotic selection, individualised according to the 
multiple risk factors of a specific patient. 

•  The technique can be easily and quickly applied to data held by 
different hospitals, creating a MLA suitable for each specific 
institution. 

•  Our study indicates that this could lead to reduced use of broad-
spectrum agents. Improved antibiotic stewardship would likely 
lead to reduced patient complications (e.g. C. diff diarrhoea), 
costs, and a reduction in the later emergence of resistance. 

•  Further studies are needed in the following areas: replicating this 
proof of principle in different institutions, understanding the 
consequences of ineffective initial therapy so that an appropriate 
“bravery index” can be selected, and developing an MLA with 
more comprehensive datasets suitable for use in a clinical trial. 

•  Ultimately MLAs should sit behind hospital electronic prescribing 
systems, guiding appropriate antibiotic choice in line with a 
patient’s “real time” individual risk factor information. 
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Figure 5. Length of stay and mortality related to 
likely efficacy of the main antibiotic received in the 
first 96h of admission 

Towards intelligent guidelines: can machine 
learning guide empirical antibiotic choice? 
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Figure 4. Primary antibiotic prescribed in first 96 
(left) and that received after 96h (right).  
Data includes all 3 organisms isolated in any specimen (urine, blood, sputum). Light 
blue=co-amoxiclav sensitive organism, dark blue=resistant 

Figure 1. ABOVE: XGBoost model structure. Individual 
classification tree models (e.g. dashed box) are combined to make 
predictions. 
Figure 2. RIGHT: Receiver operating characteristic (ROC) curve for 
algorithmic predictions of piperacillin-tazobactam resistance. 


